

AQA GCSE Topic 2 Organisation: Enzymes & Digestion Key Words

Key Word	Definition
-	Produced by the body to act as biological catalysts
	which speeds up useful chemical reactions inside
Enzymes	the body. All enzymes are proteins
	A substance that increases the speed of a reaction,
Catalyst	without being changed or used up
Metabolism	The sum of all the reactions happening within a cell
	All enzymes are proteins; they are made from
Proteins	amino acids. Enzymes have very unique shapes
	All enzymes have a unique-shaped active site. A
A ativa aita	substance involved in a chemical reaction (the
Active site	substrate) has to bind to the active site
Cubatrata	The substance that binds to the active site of an
Substrate	enzyme
	The enzyme's active site and the substrate bind when their complementary shapes match like a lock
Lock and key model	and key
Lock and key model	Instead of just acting like a lock and key, the active
	site gets tighter around the substrate once it has
Induced fit model	bound
madod in model	Best conditions for the enzyme e.g. the right pH and
Optimum conditions	the right temperature
-1.	When the temperature gets too high or if the pH is
Denatured	too high or too low the shape of the enzyme
	changes so the enzyme doesn't work anymore as
	the substrate can no longer bind to the active site
	One way food is broken down e.g. by teeth when
	we chew food and the stomach when it contracts
Mechanical digestion	and churns the food
	The second way food is broken down; it involves
Chemical digestion	enzymes to help break down food
	Enzymes that break down carbohydrates e.g. starch
Carbabydragas	into simple sugars. An example is amylase. These enzymes work in the mouth and the small intestine
Carbohydrases	Enzymes that break down proteins into amino acids.
	An example is pepsin. These enzymes work in the
Proteases	stomach and the small intestine
110104000	Enzymes that break down lipids into glycerol and
	fatty acids. These enzymes work in the small
Lipases	intestine
	Made in the liver and stored in the gall bladder
	before being released into the small intestine. Bile
	neutralises the stomach acid as enzymes in the
	small intestine need more alkaline conditions.
	Bile also breaks fat into tiny droplets (emulsification)
Bile	to help lipase enzymes
	Breaking fat down into tiny droplets which helps the
	lipase enzymes to break down fat, as there's now a
Emulsification	larger surface area
	Benedict's solution will stay blue if no sugar is
	present at all, but will go green if there's a little bit,
Panadiat's tost for augus	yellow if there's a bit more and red if there's lots of
Benedict's test for sugars	sugar
lodine test for starch	lodine solution goes blue-black if starch is present and stays orange/brown if no starch is present
Biuret test for proteins	Biuret solution goes pink or purple if protein is
Pinier rest in binrells	Dialer solution goes blilk of barble if broteil 18

	present and stays blue if no protein is present
	There will be a layer of red stained lipids if lipids are
Sudan III test for lipids	present at the top of the test tube
Lipids	Fats or oils